- The Context Window
- Posts
- đ§ RAG- Heard Of It Yet?
đ§ RAG- Heard Of It Yet?
You'll hear about it soon enough...
Talk to anyone who considers themselves an âAI expert,â and it wonât be long before they casually drop the term âRAGââas if you should have learned it alongside basic math.
RAG stands for Retrieval-Augmented Generationâbut what does that actually mean? And more importantly, does it matter to you?
Letâs break it down.
How AI Models Work (Before We Talk About RAG)
Before we get into why RAG matters, letâs quickly break down how standard AI models (like ChatGPT) actually work.
When you ask an AI like ChatGPT a question, itâs not searching the internet in real time (đ though there are exceptionsâweâll cover that later). Instead, it generates responses based on what it learned during training, which means:
đ It has a knowledge cutoff.
If something happened after the AIâs last update, it wonât know about it. Early versions of ChatGPT had a knowledge gap of months (for example, December 2023 was the last update at one point). This has improved, but even today, if you ask about last nightâs Super Bowl score, you might get no answerâor worse, a made-up one.
đ AI sometimes âhallucinates.â
Thatâs a fancy way of saying it can confidently make things up. (Weâll dive deeper into this fun AI quirk later.)
đ It pulls from stored knowledge, not live data.
Think of it like a well-read expert who stopped learning after their last textbook. If your question isnât covered in its training data, youâll either get no answerâor one thatâs completely made up.
đŁď¸ Itâs making highly educated guesses.
AI doesnât âknowâ facts the way humans doâit predicts what words should come next based on patterns it has learned.
This is where RAG (Retrieval-Augmented Generation) changes the game.
Instead of relying only on what it was trained on, RAG lets AI access external sourcesâlike Google, your internal company database, or other live data. This means:
â More accurate, up-to-date responses.
â Fact-checked information.
â Answers customized to your specific business needs.
Think of it like a GPS system that doesnât just rely on old mapsâit also checks live traffic updates before giving you directions. Thatâs the power of RAG.
Why Does RAG Matter?
RAG fixes a fundamental limitation of AIâit ensures that responses are based on real-time or company-specific information, rather than outdated or generalized knowledge.
Hereâs what that means for your business:
â Access to real-time information â AI no longer makes decisions based on stale data; it pulls in the latest reports, prices, trends, and more.
â AI that knows your business â Instead of vague, generic answers, AI can reference your companyâs product documentation, policies, or CRM data to give precise responses.
â Fewer AI hallucinations â Since RAG retrieves actual data before responding, it reduces the chances of AI âmaking things upâ (which, as we all know, happens often).
How Are Businesses Using RAG Today?
RAG isnât just an interesting conceptâitâs being used in real business applications today. Hereâs how:
đ˘ Customer Support & Chatbots
Companies are using RAG-powered AI to pull answers from their help desk, FAQs, and support documentationâso customers get accurate, brand-specific answers, not generic ones.
đź Enterprise Knowledge Assistants
Employees can ask AI specific questions like âWhatâs our latest sales strategy?â or âSummarize last quarterâs investor reportâ, and the AI retrieves the latest internal data before answering.
âď¸ Legal & Compliance Teams
RAG enables AI to check policy documents, contracts, or government regulations, so legal teams get relevant, up-to-date references rather than general legal guidance.
đď¸ E-Commerce & Product Recommendations
Retailers use RAG-powered AI to suggest products based on current inventory, customer history, and live pricing, rather than static recommendations.
RAG follows a 5 step process:
1. You ask a question â Prompt the AI. Just like asking a colleague for information, you give the AI a question or request.
2. The AI searches for answers. It looks through a trusted knowledge baseâthis could be your internal documents, customer records, or other relevant data sources.
3. The best information is found. The system pulls the most relevant facts to help craft a useful response.
4. The AI refines the response. It blends your question with the retrieved information, ensuring the answer is accurate and relevant.
5. You get a clear, informed response. Instead of making something up, the AI gives you a well-researched answer backed by real data.
Before You Jump In, Know ThisâŚ
RAG is powerful, but not plug-and-play. It requires:
âď¸ Technical setup â AI needs to be connected to data sources (APIs, databases, or document storage).
đĄ Access to quality, structured data â If your data is unorganized, RAG wonât be much help.
đ° More computing power â Fetching and analyzing live data in real-time is slower and more expensive than traditional AI responses.
In some cases, fine-tuning an AI model (training it on your data in advance) might be a better alternative, depending on your business needs.
Is RAG Worth It for Your Business?
đš If your business depends on real-time data? â Yes. â
RAG ensures AI always has the latest facts.
đš If you need AI to work with your internal company knowledge? â Yes. â
It can provide company-specific answers to employees and customers.
đš If you only use AI for brainstorming and content creation? â No. âď¸
You likely donât need the complexity of RAG.
Want to learn more about RAG or when to use it?
Reply to this email or drop a comment on X (@hashisiva).
đĄ We are out of tokens for this weekâs Context Window!
Thanks for reading.
P.S. RAG expands an AIâs âcontext windowâ by connecting it to external knowledgeâgiving it better, fresher, and more reliable answers. đ
Follow the author: X at @hashisiva | LinkedIn |
How helpful was this week's email? |